Comprehensive analysis of single cell and bulk data develops a promising prognostic signature for improving immunotherapy responses in ovarian cancer

Author:

Ding HuanfeiORCID,Hu Bowen,Guo Ruixia

Abstract

The tumor heterogeneity is an important cause of clinical therapy failure and yields distinct prognosis in ovarian cancer (OV). Using the advantages of integrated single cell RNA sequencing (scRNA-seq) and bulk data to decode tumor heterogeneity remains largely unexplored. Four public datasets were enrolled in this study, including E-MTAB-8107, TCGA-OV, GSE63885, and GSE26193 cohorts. Random forest algorithm was employed to construct a multi-gene prognostic panel and further evaluated by receiver operator characteristic (ROC), calibration curve, and Cox regression. Subsequently, molecular characteristics were deciphered, and treatments strategies were explored to deliver precise therapy. The landscape of cell subpopulations and functional characteristics, as well as the dynamic of macrophage cells were detailly depicted at single cell level, and then screened prognostic candidate genes. Based on the expression of candidate genes, a stable and robust cell characterized gene associated prognosis signature (CCIS) was developed, which harbored excellent performance at prognosis assessment and patient stratification. The ROC and calibration curves, and Cox regression analysis elucidated CCIS could serve as serve as an independent factor for predicting prognosis. Moreover, a promising clinical tool nomogram was also constructed according to stage and CCIS. Through comprehensive investigations, patients in low-risk group were charactered by favorable prognosis, elevated genomic variations, higher immune cell infiltrations, and superior antigen presentation. For individualized treatment, patients in low-risk group were inclined to better immunotherapy responses. This study dissected tumor heterogeneity and afforded a promising prognostic signature, which was conducive to facilitating clinical outcomes for patients with OV.

Funder

Hepatobiliary Foundation of Henan Charity General Federation

Zhong Yuan Thousand Talents Program-the Zhong Yuan Eminent Doctor in Henan Province

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3