Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy

Author:

Wang ShuoORCID,Li Jiacong,Zhao Yungang

Abstract

Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3