Biochemical evidence that the whole compartment activity behavior of GAPDH differs between the cytoplasm and nucleus

Author:

Tang Helen S.,Gates Chelsea R.,Schultz Michael C.ORCID

Abstract

Some metabolic enzymes normally occur in the nucleus and cytoplasm. These compartments differ in molecular composition. Since post-translational modification and interaction with allosteric effectors can tune enzyme activity, it follows that the behavior of an enzyme as a catalyst may differ between the cytoplasm and nucleus. We explored this possibility for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Homogenates of pristine nuclei and cytoplasms isolated from Xenopus laevis oocytes were used for whole compartment activity profiling in a near-physiological buffer. Titrations of NAD+ revealed similar whole compartment activity profiles for GAPDH in nuclear and cytoplasmic homogenates. Surprisingly however GAPDH in these compartments did not have the same behavior in assays of the dependence of initial velocity (v0) on G3P concentration. First, the peak v0 for nuclear GAPDH was up to 2.5-fold higher than the peak for cytoplasmic GAPDH. Second, while Michaelis Menten-like behavior was observed in all assays of cytoplasm, the v0 versus [G3P] plots for nuclear GAPDH typically exhibited a non-Michaelis Menten (sigmoidal) profile. Apparent Km and Vmax (G3P) values for nuclear GAPDH activity were highly variable, even between replicates of the same sample. Possible sources of this variability include in vitro processing of a metabolite that allosterically regulates GAPDH, turnover of a post-translational modification of the enzyme, and fluctuation of the state of interaction of GAPDH with other proteins. Collectively these findings are consistent with the hypothesis that the environment of the nucleus is distinct from the environment of the cytoplasm with regard to GAPDH activity and its modulation. This finding warrants further comparison of the regulation of nuclear and cytoplasmic GAPDH, as well as whole compartment activity profiling of other enzymes of metabolism with cytosolic and nuclear pools.

Funder

Canadian Institutes of Health Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference88 articles.

1. Enzymology of the nucleus;G Siebert;Adv Enzymol Relat Areas Mol Biol,1965

2. Biosynthetic reactions in the cell nucleus;VG Allfrey;AnfinsenCB.ed. Aspects of Protein Biosynthesis, Part A.,1974

3. The role of compartmentation in the control of glycolysis;JH Ottaway;Curr Top Cell Regul,1977

4. The Biological Roles of Post-Synthetic Modifications of Basic Nuclear Proteins

5. Distribution of enzymes between nucleus and cytoplasm of single nerve cell bodies;T Kato;J Biol Chem,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3