Low-energy Ar+ and N+ ion beam induced chemical vapor deposition using hexamethyldisilazane for the formation of nitrogen containing SiC and carbon containing SiN films

Author:

Yoshimura SatoruORCID,Sugimoto Satoshi,Takeuchi Takae,Murai Kensuke,Kiuchi Masato

Abstract

We proposed an experimental methodology for producing films on substrates with an ion beam induced chemical vapor deposition (IBICVD) method using hexamethyldisilazane (HMDS) as a source material. In this study, both HMDS and ion beam were simultaneously injected onto a Si substrate. We selected Ar+ and N+ as the ion beam. The energy of the ion beam was 101 eV. Temperature of the Si substrate was set at 540 °C. After the experiments, films were found to be deposited on the substrates. The films were then analyzed by Fourier transform infrared (FTIR) spectroscopy, stylus profilometer, X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results showed that silicon carbide films containing small amount of nitrogen were formed when Ar+ ions were injected in conjunction with HMDS. On the other hand, in the cases of N+ ion beam irradiation, silicon nitride films involving small amount of carbon were formed. It was noted that no film deposition was observed when HMDS alone was supplied to the substrates without any ion beam injections.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3