Difference in racket head trajectory and muscle activity between the standard volley and the drop volley in tennis

Author:

Furuya Ryosuke,Yokoyama Hikaru,Dimic Milos,Yanai Toshimasa,Vogt Tobias,Kanosue Kazuyuki

Abstract

Among tennis coaches and players, the standard volley and drop volley are considered basically similar, but muscles need to be relaxed (deactivation) just at the moment of impact when hitting the drop volley. However, this is not evidence-based. The aim of this study was to clarify racket head trajectory and muscle activity during the drop volley and to compare them with those of the standard volley. We hypothesized that 1) the racket head would move less forward for the drop volley than for the standard volley and 2) the wrist and elbow muscles be relaxed for the drop volley at the time of ball impact. Eleven male college students with sufficient tennis experience volunteered to participate in this study. Wireless EMG sensors recorded activation of the four arm muscles. Each subject performed the standard volley or the drop volley with both a forehand and a backhand from a position near the net. Four high speed video cameras (300 Hz) were set up on the court to measure ball speed and racket head trajectory. Returned ball speed of the drop volley was significantly lower than that of the standard volley (p < 0.05). The racket head moved less forward than in the standard volley, supporting the first hypothesis. Muscle activity of the drop volley, just before and after ball impact for both the forehand and backhand, was lower than that of the standard volley. However, the activity was in the form of a gradual increase as impact time approached, rather than a sudden deactivation (relaxation), which did not support the second hypothesis. For the drop volley, lower muscle activity in the forearm enabled a softer grip and thus allowed a “flip” movement of the racket to diminish the speed of the returned ball.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference13 articles.

1. Movement characteristics of the tennis volley;JW Chow;Med Sci Sports Exerc,1999

2. Muscle activation during the tennis volley;JW Chow;Med Sci Sports Exerc,1999

3. Pre- and post-impact muscle activation in the tennis volley: effects of ball speed, ball size and side of the body;JW Chow;Br J Sports Med,2007

4. World-class tennis technique;P Roetert;Human Kinetics,2001

5. The tennis drill book;T Hoskins-Burney;Human Kinetics,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3