Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle

Author:

Halli KathrinORCID,Vanvanhossou Seyi FridaiusORCID,Bohlouli MehdiORCID,König Sven,Yin TongORCID

Abstract

The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance components as well as main and interaction SNP-marker effects for maternal HS during the last eight weeks of cow pregnancy, considering milk production traits recorded in the offspring generation. The HS indicator was the temperature humidity index (THI) for each week. A dummy variable with the code = 1 for the respective week for THI ≥ 60 indicated HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lactation production traits from 14,188 genotyped first parity Holstein cows. After genotype quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were applied to estimate variance components. Accordingly, for genome-wide associations, models GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction SNP effects. Common genomic and residual variances for the same traits were very similar from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depending on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5 displayed the largest proportion for interaction variances (0.07). For main effects from model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs, which were located in close distance to 62 potential candidate genes. The inferred candidate genes have various biological functions, including mechanisms of immune response, growth processes and disease resistance. Two biological processes excessively represented in the overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately affecting immune response. The modelling approach considering time-lagged genotype by HS interactions for production traits inferred physiological mechanisms being associated with health and immunity, enabling improvements in selection of robust animals.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3