Winter weight loss of different subspecies of honey bee Apis mellifera colonies (Linnaeus, 1758) in southwestern Sweden

Author:

Norrström Niclas,Niklasson MatsORCID,Leidenberger SonjaORCID

Abstract

Honey bees are currently facing mounting pressures that have resulted in population declines in many parts of the world. In northern climates winter is a bottleneck for honey bees and a thorough understanding of the colonies’ ability to withstand the winter is needed in order to protect the bees from further decline. In this study the influence of weather variables on colony weight loss was studied over one winter (2019–2020) in two apiaries (32 colonies in total) in southwestern Sweden with weather stations recording wind and temperature at 5-min intervals. Three subspecies of honey bees and one hybrid were studied: the native Apis mellifera mellifera, the Italian A. m. ligustica, the Carniolan A. m. carnica and the hybrid Buckfast. Additionally, we recorded Varroa mite infestation. To analyze factors involved in resource consumption, three modelling approaches using weather and weight data were developed: the first links daily consumption rates with environmental variables, the second modelled the cumulative weight change over time, and the third estimated weight change over time taking light intensity and temperature into account. Weight losses were in general low (0.039 ± 0.013kg/day and colony) and comparable to southern locations, likely due to an exceptionally warm winter (average temperature 3.5°C). Weight losses differed only marginally between subspecies with indications that A. m. mellifera was having a more conservative resource consumption, but more studies are needed to confirm this. We did not find any effect of Varroa mite numbers on weight loss. Increased light intensity and temperature both triggered the resource consumption in honey bees. The temperature effect on resource consumption is in accordance with the metabolic theory of ecology. The consequences of these findings on honey bee survival under predicted climate changes, is still an open question that needs further analysis.

Funder

Interreg

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Colonial thermoregulation in honey bee (Apis mellifera);F Kronenberg;J Comp Physiol., B,1982

2. The nervous control of the indirect flight muscles of the honey bee;J Bastian;Z Vgl Physiol,1970

3. The honey bee colony as a superorganism;TD Seeley;Am Sci,1989

4. Endothermic heat production in honeybee winter clusters;A Stabentheiner;J Ex Biol,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3