Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia

Author:

Santos Walter Souza,Gurgel-Gonçalves RodrigoORCID,Garcez Lourdes Maria,Abad-Franch FernandoORCID

Abstract

Attalea palms provide primary habitat to Rhodnius spp., vectors of Trypanosoma cruzi. Flying from palms, these blood-sucking bugs often invade houses and can infect people directly or via food contamination. Chagas disease (CD) risk may therefore increase when Attalea palms thrive near houses. For example, Attalea dominate many deforested landscapes of eastern Amazonia, where acute-CD outbreaks are disturbingly frequent. Despite this possible link between deforestation and CD risk, the population-level responses of Amazonian Attalea and their resident Rhodnius to anthropogenic landscape disturbance remain largely uncharted. We studied adult Attalea palms in old-growth forest (OGF), young secondary forest (YSF), and cattle pasture (CP) in two localities of eastern Amazonia. We recorded 1856 Attalea along 10 transects (153.6 ha), and detected infestation by Rhodnius spp. in 18 of 280 systematically-sampled palms (33 bugs caught). Distance-sampling models suggest that, relative to OGF, adult Attalea density declined by 70–80% in CP and then recovered in YSF. Site-occupancy models estimate a strong positive effect of deforestation on palm-infestation odds (βCP-infestation = 4.82±1.14 SE), with a moderate decline in recovering YSF (βYSF-infestation = 2.66±1.10 SE). Similarly, N-mixture models suggest that, relative to OGF, mean vector density sharply increased in CP palms (βCP-density = 3.20±0.62 SE) and then tapered in YSF (βYSF-density = 1.61±0.76 SE). Together, these results indicate that disturbed landscapes may support between ~2.5 (YSF) and ~5.1 (CP) times more Attalea-dwelling Rhodnius spp. per unit area than OGF. We provide evidence that deforestation may favor palm-dwelling CD vectors in eastern Amazonia. Importantly, our landscape-disturbance effect estimates explicitly take account of (i) imperfect palm and bug detection and (ii) the uncertainties about infestation and vector density arising from sparse bug data. These results suggest that incorporating landscape-disturbance metrics into the spatial stratification of transmission risk could help enhance CD surveillance and prevention in Amazonia.

Funder

MCTI/CNPq/MS-SCTIE – Decit, Brazil

Instituto Evandro Chagas, Brazil

CAPES, Brazil

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference79 articles.

1. Chagas disease in Latin America: An epidemiological update based on 2010 estimates;World Health Organization;Wkly Epidemiol Rec,2015

2. Chagas disease in the United States: A public health approach;C Bern;Clin Microbiol Rev. 2020

3. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017;GBD 2017 Disease and Injury Incidence and Prevalence Collaborators;Lancet,2018

4. Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease;FA Monteiro;Adv Parasitol.,2018

5. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease;E Waleckx;Mem Inst Oswaldo Cruz,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3