Deep learning to predict long-term mortality in patients requiring 7 days of mechanical ventilation

Author:

George NaomiORCID,Moseley Edward,Eber ReneORCID,Siu Jennifer,Samuel Mathew,Yam Jonathan,Huang Kexin,Celi Leo Anthony,Lindvall Charlotta

Abstract

Background Among patients with acute respiratory failure requiring prolonged mechanical ventilation, tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients admitted to the intensive care unit receiving tracheostomy will die within a year, often within three months. Existing mortality prediction models for prolonged mechanical ventilation, such as the ProVent Score, have poor sensitivity and are not applied until after 14 days of mechanical ventilation. We developed a model to predict 3-month mortality in patients requiring more than 7 days of mechanical ventilation using deep learning techniques and compared this to existing mortality models. Methods Retrospective cohort study. Setting: The Medical Information Mart for Intensive Care III Database. Patients: All adults requiring ≥ 7 days of mechanical ventilation. Measurements: A neural network model for 3-month mortality was created using process-of-care variables, including demographic, physiologic and clinical data. The area under the receiver operator curve (AUROC) was compared to the ProVent model at predicting 3 and 12-month mortality. Shapley values were used to identify the variables with the greatest contributions to the model. Results There were 4,334 encounters divided into a development cohort (n = 3467) and a testing cohort (n = 867). The final deep learning model included 250 variables and had an AUROC of 0.74 for predicting 3-month mortality at day 7 of mechanical ventilation versus 0.59 for the ProVent model. Older age and elevated Simplified Acute Physiology Score II (SAPS II) Score on intensive care unit admission had the largest contribution to predicting mortality. Discussion We developed a deep learning prediction model for 3-month mortality among patients requiring ≥ 7 days of mechanical ventilation using a neural network approach utilizing readily available clinical variables. The model outperforms the ProVent model for predicting mortality among patients requiring ≥ 7 days of mechanical ventilation. This model requires external validation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3