Abstract
Background
Among patients with acute respiratory failure requiring prolonged mechanical ventilation, tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients admitted to the intensive care unit receiving tracheostomy will die within a year, often within three months. Existing mortality prediction models for prolonged mechanical ventilation, such as the ProVent Score, have poor sensitivity and are not applied until after 14 days of mechanical ventilation. We developed a model to predict 3-month mortality in patients requiring more than 7 days of mechanical ventilation using deep learning techniques and compared this to existing mortality models.
Methods
Retrospective cohort study. Setting: The Medical Information Mart for Intensive Care III Database. Patients: All adults requiring ≥ 7 days of mechanical ventilation. Measurements: A neural network model for 3-month mortality was created using process-of-care variables, including demographic, physiologic and clinical data. The area under the receiver operator curve (AUROC) was compared to the ProVent model at predicting 3 and 12-month mortality. Shapley values were used to identify the variables with the greatest contributions to the model.
Results
There were 4,334 encounters divided into a development cohort (n = 3467) and a testing cohort (n = 867). The final deep learning model included 250 variables and had an AUROC of 0.74 for predicting 3-month mortality at day 7 of mechanical ventilation versus 0.59 for the ProVent model. Older age and elevated Simplified Acute Physiology Score II (SAPS II) Score on intensive care unit admission had the largest contribution to predicting mortality.
Discussion
We developed a deep learning prediction model for 3-month mortality among patients requiring ≥ 7 days of mechanical ventilation using a neural network approach utilizing readily available clinical variables. The model outperforms the ProVent model for predicting mortality among patients requiring ≥ 7 days of mechanical ventilation. This model requires external validation.
Publisher
Public Library of Science (PLoS)
Reference61 articles.
1. Factors considered important at the end of life by patients, family, physicians, and other care providers;KE Steinhauser;JAMA,2000
2. What matters most in end-of-life care: perceptions of seriously ill patients and their family members;DK Heyland;CMAJ Can Med Assoc J J Assoc Medicale Can,2006
3. Quality end-of-life care: patients’ perspectives;PA Singer;JAMA,1999
4. Dignity in the terminally ill: a cross-sectional, cohort study;HM Chochinov;Lancet Lond Engl,2002
5. In search of a good death: observations of patients, families, and providers;KE Steinhauser;Ann Intern Med,2000
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献