C1ql1 is expressed in adult outer hair cells of the cochlea in a tonotopic gradient

Author:

Biswas Joyshree,Pijewski Robert S.ORCID,Makol Rohit,Miramontes Tania G.,Thompson Brianna L.,Kresic Lyndsay C.,Burghard Alice L.,Oliver Douglas L.,Martinelli David C.ORCID

Abstract

Hearing depends on the transduction of sounds into neural signals by the inner hair cells of the cochlea. Cochleae also have outer hair cells with unique electromotile properties that increase auditory sensitivity, but they are particularly susceptible to damage by intense noise exposure, ototoxic drugs, and aging. Although the outer hair cells have synapses on afferent neurons that project to the brain, the function of this neuronal circuit is unclear. Here, we created a novel mouse allele that inserts a fluorescent reporter at the C1ql1 locus which revealed gene expression in the outer hair cells and allowed creation of outer hair cell-specific C1ql1 knockout mice. We found that C1ql1 expression in outer hair cells corresponds to areas with the most sensitive frequencies of the mouse audiogram, and that it has an unexpected adolescence-onset developmental timing. No expression was observed in the inner hair cells. Since C1QL1 in the brain is made by neurons, transported anterogradely in axons, and functions in the synaptic cleft, C1QL1 may serve a similar function at the outer hair cell afferent synapse. Histological analyses revealed that C1ql1 conditional knockout cochleae may have reduced outer hair cell afferent synapse maintenance. However, auditory behavioral and physiological assays did not reveal a compelling phenotype. Nonetheless, this study identifies a potentially useful gene expressed in the cochlea and opens the door for future studies aimed at elucidating the function of C1QL1 and the function of the outer hair cell and its afferent neurons.

Funder

Hearing Health Foundation

Connecticut Institute for the Brain and Cognitive Sciences

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3