Abstract
One should assume that in silico experiments in systems biology are less susceptible to reproducibility issues than their wet-lab counterparts, because they are free from natural biological variations and their environment can be fully controlled. However, recent studies show that only half of the published mathematical models of biological systems can be reproduced without substantial effort. In this article we examine the potential causes for failed or cumbersome reproductions in a case study of a one-dimensional mathematical model of the atrioventricular node, which took us four months to reproduce. The model demonstrates that even otherwise rigorous studies can be hard to reproduce due to missing information, errors in equations and parameters, a lack in available data files, non-executable code, missing or incomplete experiment protocols, and missing rationales behind equations. Many of these issues seem similar to problems that have been solved in software engineering using techniques such as unit testing, regression tests, continuous integration, version control, archival services, and a thorough modular design with extensive documentation. Applying these techniques, we reimplement the examined model using the modeling language Modelica. The resulting workflow is independent of the model and can be translated to SBML, CellML, and other languages. It guarantees methods reproducibility by executing automated tests in a virtual machine on a server that is physically separated from the development environment. Additionally, it facilitates results reproducibility, because the model is more understandable and because the complete model code, experiment protocols, and simulation data are published and can be accessed in the exact version that was used in this article. We found the additional design and documentation effort well justified, even just considering the immediate benefits during development such as easier and faster debugging, increased understandability of equations, and a reduced requirement for looking up details from the literature.
Publisher
Public Library of Science (PLoS)
Reference79 articles.
1. How Modeling Standards, Software, and Initiatives Support Reproducibility in Systems Biology and Systems Medicine;D Waltemath;IEEE Transactions on Biomedical Engineering,2016
2. Guidelines for Reproducibly Building and Simulating Systems Biology Models;JK Medley;IEEE transactions on bio-medical engineering,2016
3. An Empirical Analysis of Journal Policy Effectiveness for Computational Reproducibility;V Stodden;Proceedings of the National Academy of Sciences,2018
4. A Long Journey into Reproducible Computational Neuroscience;M Topalidou;Frontiers in Computational Neuroscience,2015
5. Reproducibility vs. Replicability: A Brief History of a Confused Terminology;HE Plesser;Frontiers in Neuroinformatics,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献