Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network

Author:

Garno Chelsea,Irons Zoe H.,Gamache Courtney M.,McKim Quenelle,Reyes Gabriela,Wu Xufeng,Shuster Charles B.,Henson John H.ORCID

Abstract

The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.

Funder

National Science Foundation

Charles Lambert Fellowship

Friday Harbor Labs Research Fellowship

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference84 articles.

1. Nine unanswered questions about cytokinesis;T. D. Pollard;Journal of Cell Biology,2017

2. Cytokinesis in metazoa and fungi;M. Glotzer;Cold Spring Harbor Perspectives in Biology,2017

3. Molecular form and function of the cytokinetic ring;M. C. Mangione;Journal of Cell Science,2019

4. Molecular mechanism of cytokinesis;T. D. Pollard;Annual Review of Biochemistry,2019

5. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe;A. H. Willet;Current Opinion in Microbiology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3