Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network

Author:

Lee Seung-YeonORCID,Kang Hyeon,Jeong Jong-HunORCID,Kang Do-youngORCID

Abstract

High accuracy has been reported in deep learning classification for amyloid brain scans, an important factor in Alzheimer’s disease diagnosis. However, the possibility of overfitting should be considered, as this model is fitted with sample data. Therefore, we created and evaluated an [18F]Florbetaben amyloid brain positron emission tomography (PET) scan classification model with a Dong-A University Hospital (DAUH) dataset based on a convolutional neural network (CNN), and performed external validation with the Alzheimer’s Disease Neuroimaging Initiative dataset. Spatial normalization, count normalization, and skull stripping preprocessing were performed on the DAUH and external datasets. However, smoothing was only performed on the external dataset. Three types of models were used, depending on their structure: Inception3D, ResNet3D, and VGG3D. After training with 80% of the DAUH dataset, an appropriate model was selected, and the rest of the DAUH dataset was used for model evaluation. The generalization potential of the selected model was then validated using the external dataset. The accuracy of the model evaluation for Inception3D, ResNet3D, and VGG3D was 95.4%, 92.0%, and 97.7%, and the accuracy of the external validation was 76.7%, 67.1%, and 85.3%, respectively. Inception3D and ResNet3D were retrained with the external dataset; then, the area under the curve was compared to determine the binary classification performance with a significance level of less than 0.05. When external validation was performed again after fine tuning, the performance improved to 15.3%p for Inception3D and 16.9%p for ResNet3D. In [18F]Florbetaben amyloid brain PET scan classification using CNN, the generalization potential can be seen through external validation. When there is a significant difference between the model classification performance and the external validation, changing the model structure or fine tuning the model can help improve the classification performance, and the optimal model can also be found by collaborating through a web-based open platform.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Current Knowledge and Clinical Application of Brain Imaging in Alzheimer’s Disease;DW Kang;Journal of Korean Neuropsychiatric Association,2018

2. A review of neuroimaging biomarkers of Alzheimer’s disease;T Varghese;Neurology Asia,2013

3. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis;HI Suk;NeuroImage,2014

4. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis;HI Suk;Brain Structure and Function,2015

5. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease;J Shi;IEEE journal of biomedical and health informatics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3