A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data

Author:

Aguilaniu BernardORCID,Hess David,Kelkel Eric,Briault Amandine,Destors Marie,Boutros JacquesORCID,Zhi Li Pei,Antoniadis Anestis

Abstract

Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity and mortality in COPD patients. Apart from patients with obvious EI, the identification of a such behavior during a real-life consultation is unreliable. We therefore describe a machine learning algorithm to screen for EI, as actimetry measurements are difficult to implement. Complete datasets for 1409 COPD patients were obtained from COLIBRI-COPD, a database of clinicopathological data submitted by French pulmonologists. Patient- and pulmonologist-reported estimates of PA quantity (daily walking time) and intensity (domestic, recreational, or fitness-directed) were first used to assign patients to one of four PA groups (extremely inactive [EI], overtly active [OA], intermediate [INT], inconclusive [INC]). The algorithm was developed by (i) using data from 80% of patients in the EI and OA groups to identify ‘phenotype signatures’ of non-PA-related clinical variables most closely associated with EI or OA; (ii) testing its predictive validity using data from the remaining 20% of EI and OA patients; and (iii) applying the algorithm to identify EI patients in the INT and INC groups. The algorithm’s overall error for predicting EI status among EI and OA patients was 13.7%, with an area under the receiver operating characteristic curve of 0.84 (95% confidence intervals: 0.75–0.92). Of the 577 patients in the INT/INC groups, 306 (53%) were reclassified as EI by the algorithm. Patient- and physician- reported estimation may underestimate EI in a large proportion of COPD patients. This algorithm may assist physicians in identifying patients in urgent need of interventions to promote PA.

Funder

Agir à Dom

AstraZeneca

Boehringer Ingelheim

Chiesi

GlaxoSmithKline

Novartis

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3