Dissection of a rice OsMac1 mRNA 5’ UTR to uncover regulatory elements that are responsible for its efficient translation

Author:

Mutsuro-Aoki Hiromi,Teramura Hiroshi,Tamukai Ryoko,Fukui Miho,Kusano Hiroaki,Schepetilnikov Mikhail,Ryabova Lyubov A.,Shimada HiroakiORCID

Abstract

The untranslated regions (UTRs) of mRNAs are involved in many posttranscriptional regulatory pathways. The rice OsMac1 mRNA has three splicing variants of the 5’ UTR (UTRa, UTRb, and UTRc), which include a CU-rich region and three upstream open reading frames (uORFs). UTRc contains an additional 38-nt sequence, termed sp38, which acts as a strong translational enhancer of the downstream ORF; reporter analysis revealed translational efficiencies >15-fold higher with UTRc than with the other splice variants. Mutation analysis of UTRc demonstrated that an optimal sequence length of sp38, rather than its nucleotide sequence is essential for UTRc to promote efficient translation. In addition, the 5’ 100 nucleotides of CU-rich region contribute to UTRc translational enhancement. Strikingly, three uORFs did not reveal their inhibitory potential within the full-length leader, whereas deletion of the 5’ leader fragment preceding the leader region with uORFs nearly abolished translation. Computational prediction of UTRc structural motifs revealed stem-loop structures, termed SL1-SL4, and two regions, A and B, involved in putative intramolecular interactions. Our data suggest that SL4 binding to Region-A and base pairing between Region-B and the UTRc 3’end are critically required for translational enhancement. Since UTRc is not capable of internal initiation, we presume that the three-dimensional leader structures can allow translation of the leader downstream ORF, likely allowing the bypass of uORFs.

Funder

Grant from the Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan

Ministry of Education, Culture, Sports, Science and Technology

Agence Nationale de la Recherche

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3