Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI

Author:

Almarri BadarORCID,Rajasekaran Sanguthevar,Huang Chun-Hsi

Abstract

The dimensionality of the spatially distributed channels and the temporal resolution of electroencephalogram (EEG) based brain-computer interfaces (BCI) undermine emotion recognition models. Thus, prior to modeling such data, as the final stage of the learning pipeline, adequate preprocessing, transforming, and extracting temporal (i.e., time-series signals) and spatial (i.e., electrode channels) features are essential phases to recognize underlying human emotions. Conventionally, inter-subject variations are dealt with by avoiding the sources of variation (e.g., outliers) or turning the problem into a subject-deponent. We address this issue by preserving and learning from individual particularities in response to affective stimuli. This paper investigates and proposes a subject-independent emotion recognition framework that mitigates the subject-to-subject variability in such systems. Using an unsupervised feature selection algorithm, we reduce the feature space that is extracted from time-series signals. For the spatial features, we propose a subject-specific unsupervised learning algorithm that learns from inter-channel co-activation online. We tested this framework on real EEG benchmarks, namely DEAP, MAHNOB-HCI, and DREAMER. We train and test the selection outcomes using nested cross-validation and a support vector machine (SVM). We compared our results with the state-of-the-art subject-independent algorithms. Our results show an enhanced performance by accurately classifying human affection (i.e., based on valence and arousal) by 16%–27% compared to other studies. This work not only outperforms other subject-independent studies reported in the literature but also proposes an online analysis solution to affection recognition.

Funder

Deanship of Scientific Research, King Faisal University

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Affective Computing

2. Toward a working definition of emotion;K Mulligan;Emotion Review,2012

3. EEG-based emotion recognition;DO Bos;The Influence of Visual and Auditory Stimuli,2006

4. Study of resting-state functional connectivity networks using EEG electrodes position as seed;GM Rojas;Frontiers in neuroscience,2018

5. ReliefF-based EEG sensor selection methods for emotion recognition;J Zhang;Sensors,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3