Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet

Author:

Wang YueQun,Dong LiYan,Li YongLi,Zhang HaoORCID

Abstract

Introducing a knowledge graph into a recommender system as auxiliary information can effectively solve the sparse and cold start problems existing in traditional recommender systems. In recent years, many researchers have performed related work. A recommender system with knowledge graph embedding learning characteristics can be combined with a recommender system of the following three forms: one-by-one learning, joint learning, and alternating learning. For current knowledge graph embedding, a deep learning framework only has one embedding mode, which fails to excavate the potential information from the knowledge graph thoroughly. To solve this problem, this paper proposes the Ripp-MKR model, a multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet, which combines joint learning and alternating learning of knowledge graphs and recommender systems. Ripp-MKR is a deep end-to-end framework that utilizes a knowledge graph embedding task to assist recommendation tasks. Similar to the MKR model, in the Ripp-MKR model, two tasks are associated with cross and compress units, which automatically share latent features and learn the high-order interactions among items in recommender systems and entities in the knowledge graph. Additionally, the model borrows ideas from RippleNet and combines the knowledge graph with the historical interaction record of a user’s historically clicked items to represent the user’s characteristics. Through extensive experiments on real-world datasets, we demonstrate that Ripp-MKR achieves substantial gains over state-of-the-art baselines in movie, book, and music recommendations.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3