An evaluation of contralateral hand involvement in the operation of the Delft Self-Grasping Hand, an adjustable passive prosthesis

Author:

Chadwell AlixORCID,Chinn NatalieORCID,Kenney Laurence,Karthaus Zoë J.,Mos Daniek,Smit Gerwin

Abstract

The Delft Self-Grasping Hand is an adjustable passive prosthesis operated using the concept of tenodesis (where opening and closing of the hand is mechanically linked to the flexion and extension of the wrist). As a purely mechanical device that does not require harnessing, the Self-Grasping Hand offers a promising alternative to current prostheses. However, the contralateral hand is almost always required to operate the mechanism to release a grasp and is sometimes also used to help form the grasp; hence limiting the time it is available for other purposes. In this study we quantified the amount of time the contralateral hand was occupied with operating the Self-Grasping Hand, classified as either direct or indirect interaction, and investigated how these periods changed with practice. We studied 10 anatomically intact participants learning to use the Self-Grasping Hand fitted to a prosthesis simulator. The learning process involved 10 repeats of a feasible subset of the tasks in the Southampton Hand Assessment Procedure (SHAP). Video footage was analysed, and the time that the contralateral hand was engaged in grasping or releasing was calculated. Functionality scores increased for all participants, plateauing at an Index of Functionality of 33.5 after 5 SHAP attempts. Contralateral hand involvement reduced significantly from 6.47 (first 3 attempts) to 4.68 seconds (last three attempts), but as a proportion of total task time remained relatively steady (increasing from 29% to 32%). For 9/10 participants most of this time was supporting the initiation of grasps rather than releases. The reliance on direct or indirect interactions between the contralateral hand and the prosthesis varied between participants but appeared to remain relatively unchanged with practice. Future studies should consider evaluating the impact of reliance on the contralateral limb in day-to-day life and development of suitable training methods.

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Passive prosthetic hands and tools: A literature review;B Maat;Prosthet Orthot Int,2018

2. Smit G, Maat B, Plettenburg D et al. A Self-Grasping Hand Prosthesis. in MEC17—Myoelectric controls and upper limb prosthetics symposium, Fredericton, New Brunswick, Canada, 15–18 Aug 2017, paper no. 59. Available from: https://www.unb.ca/research/institutes/biomedical/mec/_resources/docs/Past%20MEC%20Proceeding/MEC17FullProceedings.pdf

3. Evaluating reachable workspace and user control over prehensor aperture for a body-powered prosthesis;A Chadwell;IEEE Trans Neural Syst Rehabil Eng,2020

4. Lindner H. The Assessment of Capacity for Myoelectric Control–psychometric evidence and comparison with upper limb prosthetic outcome measures. PhD Thesis, Örebro University, Sweden. 2013. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-30071

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3