Hepcidin induces intestinal calcium uptake while suppressing iron uptake in Caco-2 cells

Author:

Phoaubon Supathra,Lertsuwan KornkamonORCID,Teerapornpuntakit Jarinthorn,Charoenphandhu Narattaphol

Abstract

Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.

Funder

CIF and CNI grant, Faculty of Science, Mahidol University

Science Achievement Scholarship of Thailand

National Research Council of Thailand (NRCT)-Mahidol University

Mahidol University-Multidisciplinary Research Cluster Grant

National Science and Technology Development Agency

Research Assistant Grant, Faculty of Science, Mahidol University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3