Abstract
In order to develop microbial additives for rabbit feed, a spore-forming bacteria was isolated from the feces of Hyla rabbit using reinforced clostridium medium (RCM). The 16S rDNA sequence of the bacterium was subjected to pairwise sequence alignment using BLAST; the colony morphology, and physiological, biochemical, and stress resistance were studied. The results showed that the bacterium was Clostridium sartagoforme, a gram positive anaerobe, which can produce spores. The colony diameter was 0.5 mm—2.5 mm, the diameter of the bacteria was 0.5 μm—1.0 μm × 2.0 μm—6.3 μm, and the spore diameter was 1 μm—1.2 μm × 1 μm—1.2 μm. C. sartagoforme can utilize various sugars and alcohols such as fructose, galactose, sorbitol, and inositol. It secreted cellulase into the extracellular environment to form a transparent hydrolysis circle in Congo red medium, it could not liquify gelatin, and the lysine decarboxylase reaction was positive. In liquid medium it entered the stable growth period after 9 h of inoculation. Additionally, it had good stress resistance with a survival rate that exceeded 53% after gastric juice (pH 2.5) treatment for 3 h, it grew in a medium with a bile salt concentration of 0.3%, and the survival rate exceeded 85% after 10 minutes at 80°C. Moreover, animal testing indicated that this strain has no adverse effects on the morbidity and mortality of rabbits. In summary, C. sartagoforme XN-T4 was isolated from rabbit feces. This bacterium has good resistance to stress, can decompose a variety of monosaccharides and polysaccharides including cellulose, which is relatively harmless for animal health.
Funder
Shaanxi Province Science and Technology Project
Shaanxi Province Agricultural Science and Technology Innovation and Research Project
Shaanxi Province Agricultural Science and Technology Innovation Transformation Project
Yangling Demonstration Zone Industry-University-Research Collaborative Innovation Major Project
Key R&D project of Shaanxi Province
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献