Visuomotor control of intermittent circular tracking movements with visually guided orbits in 3D VR environment

Author:

Choi Woong,Yanagihara Naoki,Li Liang,Kim Jaehyo,Lee JonghoORCID

Abstract

The analysis of visually guided tracking movements is important to the understanding of imitation exercises and movements carried out using the human visuomotor control system. In this study, we analyzed the characteristics of visuomotor control in the intermittent performance of circular tracking movements by applying a system that can differentiate between the conditions of invisible and visible orbits and visible and invisible target phases implemented in a 3D VR space. By applying visuomotor control based on velocity control, our study participants were able to track objects with visible orbits with a precision of approximately 1.25 times greater than they could track objects with invisible orbits. We confirmed that position information is an important parameter related to intermittent motion at low speeds (below 0.5 Hz) and that tracked target velocity information could be obtained more precisely than position information at speeds above 0.5 Hz. Our results revealed that the feedforward (FF) control corresponding to velocity was delayed under the visible-orbit condition at speeds over 0.5 Hz, suggesting that, in carrying out imitation exercises and movements, the use of visually presented 3D guides can interfere with exercise learning and, therefore, that the effects of their use should be carefully considered.

Funder

Japan Science and Technology Agency and from the Ministry of Education, Culture, Sports, Science and Technology

Korea National Research Foundation (KNRF), grant funded by theKorean Government

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3