Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank

Author:

Gafni AvivORCID,Dite Gillian S.ORCID,Spaeth Tuff Erika,Allman RichardORCID,Hopper John L.

Abstract

Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recommendations, and consequently do better than a one-size-fits-all screening regimen. Current screening guidelines in the UK, USA and Australia focus solely on family history and age for risk prediction, even though the vast majority of the population do not have any family history. We investigated adding a polygenic risk score based on 45 single-nucleotide polymorphisms to a family history model (combined model) to quantify how it improves the stratification and discriminatory performance of 10-year risk and full lifetime risk using a prospective population-based cohort within the UK Biobank. For both 10-year and full lifetime risk, the combined model had a wider risk distribution compared with family history alone, resulting in improved risk stratification of nearly 2-fold between the top and bottom risk quintiles of the full lifetime risk model. Importantly, the combined model can identify people (n = 72,019) who do not have family history of colorectal cancer but have a predicted risk that is equivalent to having at least one affected first-degree relative (n = 44,950). We also confirmed previous findings by showing that the combined full lifetime risk model significantly improves discriminatory accuracy compared with a simple family history model 0.673 (95% CI 0.664–0.682) versus 0.666 (95% CI 0.657–0.675), p = 0.0065. Therefore, a combined polygenic risk score and first-degree family history model could be used to improve risk stratified population screening programs.

Funder

Genetic technologies Limited

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3