Artificial accommodating intraocular lens powered by an ion polymer-metal composite actuator

Author:

Horiuchi TetsuyaORCID,Mihashi Toshifumi,Hoshi Sujin,Okamoto Fumiki,Oshika TetsuroORCID

Abstract

The current method of controlling the focus of an accommodating intraocular lens is based on ciliary muscle contraction and cannot be used in older patients with presbyopia. We aimed to develop a dynamically accommodating intraocular lens powered by a membrane-shaped ion polymer metal composite actuator that is thin enough to be inserted in the eye. This study addresses two key problems identified in our previous accommodating intraocular lens prototype: the lack of repeatability due to the use of swine lenses instead of artificial lenses and the occurrence of a sixth order aberration. Thus, we present a new accommodating intraocular lens design and a method to transfer energy to actuators. To accommodate lens deformation and depth of focus, we used a membrane-shaped ion polymer metal composite actuator, thin enough to be inserted in the eye, and used an artificial silicone lens. To prevent the sixth order aberration, we included a ring between the ion polymer metal composite actuator and the lens. Different voltage patterns were applied to the IPMC actuator and changes in focus were observed. We were able to obtain repeatability and prevent the sixth order aberration. The dioptric power changed to ±0.23 D when ±1.5 V was used; however, at >1.5 V, a large accommodating range occurred, in addition to astigmatic vision. Thus, we have developed a novel prototype that is completely artificial, allowing reproducible and repeatable results. Visual accommodative demands were successfully met; however, although astigmatic vision was lessened, it was not completely eradicated.

Funder

Japan Society for the Promotion of Science

T-CReDO, Tsukuba Clinical Research & Development Organization

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference18 articles.

1. World Health Organization. Blindness and vision impairment. 2020 October 8 [cited 9 December 2020]. http://www.who.int/mediacentre/factsheets/fs282/en/

2. Subjective depth-of-focus of the eye;DA Atchison;Optom Vis Sci,1997

3. Voltage-controlled accommodating IOL system using an ion polymer metal composite actuator;T Horiuchi;Opt Express,2016

4. Design strategies for new accommodating IOLs;PS Pepose;Cataract Refract. Surg. Today,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3