COVID RADAR app: Description and validation of population surveillance of symptoms and behavior in relation to COVID-19

Author:

van Dijk Willian J.ORCID,Saadah Nicholas H.,Numans Mattijs E.,Aardoom Jiska J.ORCID,Bonten Tobias N.,Brandjes Menno,Brust Michelle,le Cessie Saskia,Chavannes Niels H.,Middelburg Rutger A.ORCID,Rosendaal Frits,Visser Leo G.,Kiefte-de Jong JessicaORCID

Abstract

Background Monitoring of symptoms and behavior may enable prediction of emerging COVID-19 hotspots. The COVID Radar smartphone app, active in the Netherlands, allows users to self-report symptoms, social distancing behaviors, and COVID-19 status daily. The objective of this study is to describe the validation of the COVID Radar. Methods COVID Radar users are asked to complete a daily questionnaire consisting of 20 questions assessing their symptoms, social distancing behavior, and COVID-19 status. We describe the internal and external validation of symptoms, behavior, and both user-reported COVID-19 status and state-reported COVID-19 case numbers. Results Since April 2nd, 2020, over 6 million observations from over 250,000 users have been collected using the COVID Radar app. Almost 2,000 users reported having tested positive for SARS-CoV-2. Amongst users testing positive for SARS-CoV-2, the proportion of observations reporting symptoms was higher than that of the cohort as a whole in the week prior to a positive SARS-CoV-2 test. Likewise, users who tested positive for SARS-CoV-2 showed above average risk social-distancing behavior. Per-capita user-reported SARS-CoV-2 positive tests closely matched government-reported per-capita case counts in provinces with high user engagement. Discussion The COVID Radar app allows voluntarily self-reporting of COVID-19 related symptoms and social distancing behaviors. Symptoms and risk behavior increase prior to a positive SARS-CoV-2 test, and user-reported case counts match closely with nationally-reported case counts in regions with high user engagement. These results suggest the COVID Radar may be a valid instrument for future surveillance and potential predictive analytics to identify emerging hotspots.

Funder

ZonMw

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference18 articles.

1. An interactive web-based dashboard to track COVID-19 in real time (vol 20, pg 533, 2020);E Dong;Lancet Infect Dis,2020

2. (RIVM) RvVeM. Actuele informatie over het nieuwe coronavirus COVID-19 2020 [cited 2021 01-03-2021]. https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/search?resultType=details&any_OR__title=covid-19&isChild=’false’&fast=index&sortBy=relevance&from=1&to=20.

3. (NICE) NICE. Jaarboek 2018: Stichting NICE; 2019. 54 p.

4. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: a systematic review;T Girum;Trop Med Health,2020

5. What do countries need to do to implement effective ’find, test, trace, isolate and support’ systems?;S Rajan;J R Soc Med,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3