CESCR: CP-ABE for efficient and secure sharing of data in collaborative ehealth with revocation and no dummy attribute

Author:

Edemacu Kennedy,Jang Beakcheol,Kim Jong WookORCID

Abstract

With the rapid advancement of information and communication technologies, there is a growing transformation of healthcare systems. A patient’s health data can now be centrally stored in the cloud and be shared with multiple healthcare stakeholders, enabling the patient to be collaboratively treated by more than one healthcare institution. However, several issues, including data security and privacy concerns still remain unresolved. Ciphertext-policy attribute-based encryption (CP-ABE) has shown promising potential in providing data security and privacy in cloud-based systems. Nevertheless, the conventional CP-ABE scheme is inadequate for direct adoption in a collaborative ehealth system. For one, its expressiveness is limited as it is based on a monotonic access structure. Second, it lacks an attribute/user revocation mechanism. Third, the computational burden on both the data owner and data users is linear with the number of attributes in the ciphertext. To address these inadequacies, we propose CESCR, a CP-ABE for efficient and secure sharing of health data in collaborative ehealth systems with immediate and efficient attribute/user revocation. The CESCR scheme is unbounded, i.e., it does not bind the size of the attribute universe to the security parameter, it is based on the expressive and non-restrictive ordered binary decision diagram (OBDD) access structure, and it securely outsources the computationally demanding attribute operations of both encryption and decryption processes without requiring a dummy attribute. Security analysis shows that the CESCR scheme is secure in the selective model. Simulation and performance comparisons with related schemes also demonstrate that the CESCR scheme is expressive and efficient.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Collaborative ehealth meets security: Privacy-enhancing patient profile management;R Sánchez-Guerrero;IEEE journal of biomedical and health informatics,2017

2. A survey on wearable sensor-based systems for health monitoring and prognosis;A Pantelopoulos;IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),2009

3. Privacy-preserving personal health record using multi-authority attribute-based encryption with revocation;H Qian;International Journal of Information Security,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3