Abstract
Pesticides are one of the main drivers of the worldwide amphibian decline. Their actual toxicity depends on a number of factors, like the species in focus or the developmental stage of exposed individuals. As ectothermic species, the metabolism of amphibians is influenced by ambient temperature. Therefore, temperature also affects metabolic rates and thus processes that might enhance or reduce toxic effects. Studies about the interactive effect of temperature and toxicity on amphibians are rare and deliver contrasting results. To investigate the temperature-dependent pesticide sensitivity of larvae of two European species we conducted acute toxicity tests for the viticultural fungicide Folpan® 500 SC with the active ingredient folpet at different temperatures (6°C, 11°C, 16°C, 21°C, 26°C). Sensitivity of Rana temporaria and Bufotes viridis was highly affected by temperature: early larvae (Gosner stage 20) were about twice more sensitive to Folpan® 500 SC at 6°C compared to 21°C. Next to temperature, species and developmental stage of larvae had an effect on sensitivity. The most sensitive individuals (early stages of R. temporaria at 6°C) were 14.5 times more sensitive than the least sensitive ones (early stages of B. viridis at 26°C). Our results raise concerns about typical ecotoxicological studies with amphibians that are often conducted at temperatures between 15°C and 20°C. We suggest that future test designs should be performed at temperatures that reflect the temperature range amphibians are exposed to in their natural habitats. Variations in the sensitivity due to temperature should also be considered as an uncertainty factor in upcoming environmental risk assessments for amphibians.
Funder
Deutsche Forschungsgesellschaft
Publisher
Public Library of Science (PLoS)
Reference62 articles.
1. Eurostat. Pesticide sales [Internet]. 2020 [cited 18 Jan 2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-382683_QID_7670BBE_UID_-3F171EB0&layout=PESTICID,L,X,0;TIME,C,X,1;GEO,L,Y,0;UNIT,L,Z,0;INDICATORS,C,Z,1;&zSelection=DS-382683UNIT,KG;DS-382683INDICATORS,OBS_FLAG;&rankName1=UNIT_1_2_-1_2&r
2. Amounts of pesticides reaching target pests: Environmental impacts and ethics;D. Pimentel;J Agric Environ Ethics,1995
3. Modeling spray drift and runoff-related inputs of pesticides to receiving water;X Zhang;Environ Pollut.,2018
4. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review;S Reichenberger;Sci Total Environ,2007
5. Agricultural ponds support amphibian populations.;MG Knutson;Ecol Appl,2004
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献