A multi-objective scheduling method for operational coordination time using improved triangular fuzzy number representation

Author:

Zhao LudaORCID,Wang Bin,Shen Congyong

Abstract

In modern warfare, the comprehensiveness of combat domain and the complexity of tasks pose great challenges to operational coordination.To address this challenge, we use the improved triangular fuzzy number to express the combat mission time, first present a new multi-objective operational cooperative time scheduling model that takes the fluctuation of combat coordinative time and the time flexibility between each task into account. The resulting model is essentially a large-scale multi-objective combinatorial optimization problem, intractably complicated to solve optimally. We next propose multi-objective improved Bat algorithm based on angle decomposition (MOIBA/AD) to quickly identify high-quality solutions to the model. Our proposed algorithm improves the decomposition strategy by replacing the planar space with the angle space, which helps greatly reduce the difficulty of processing evolutionary individuals and hence the time complexity of the multi-objective evolutionary algorithm based on decomposition (MOEA/D). Moreover, the population replacement strategy is enhanced utilizing the improved bat algorithm, which helps evolutionary individuals avoid getting trapped in local optima. Computational experiments on multi-objective operational cooperative time scheduling (MOOCTS) problems of different scales demonstrate the superiority of our proposed method over four state-of-the-art multi-objective evolutionary algorithms (MOEAs), including multi-objective bat Algorithm (MOBA), MOEA/D, non-dominated sorting genetic algorithm version II (NSGA-II) and multi-objective particle swarm optimization algorithm (MOPSO). Our proposed method performs better in terms of four performance criteria, producing solutions of higher quality while keeping a better distribution of the Pareto solution set.

Funder

the Military Postgraduate Funding Project

the Hunan Province Postgraduate Scientific Research Innovation Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference68 articles.

1. Artificial war: Multiagent-based simulation of combat;A Ilachinski;World Scientific,2004

2. Liu JS, Sycara KP. Multiagent coordination in tightly coupled task scheduling. In: Proceedings of the Second International Conference on Multi-Agent Systems; 1996. p. 181–188.

3. Task network-based project dynamic scheduling and schedule coordination;Q Hao;Advanced Engineering Informatics,2010

4. Jiang J, Ma S, Li B, Li B. Symbiosis: Network-aware task scheduling in data-parallel frameworks. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE; 2016. p. 1–9.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3