Water jet as a novel technique for enamel drilling ex vivo

Author:

Liu ChangORCID,Chen Rourong,Han ChengZao,Pi Xiaoqin,Chang Shuli,Jiang Han,Long Xinping,Du Minquan

Abstract

To investigate the usage of a water jet for enamel drilling ex vivo, 210 individual extracted molars without lesions or fillings were collected. Then, the specimens were drilled by a water jet or a high-speed dental drill. The cavities of 50 teeth were reconstructed digitally by micro-computed tomography (micro-CT) to measure the height and width. The cavities of 10 teeth were longitudinally incised and their surfaces were observed by scanning electronic microscopy (SEM). After the cavities were filled, 50 fillings were vertically incised. The bonding interface between tooth and filling was observed by SEM. 50 teeth with fillings were stained in 0.1% rhodamine B solution, and then the dye penetration between tooth and filling was observed under the stereomicroscope and confocal laser scanning microscopy (CLSM). The bonding strength between enamel and filling of 50 teeth was simulated and predicted with finite element analysis (FEA). At 140–150 MPa and for 2–3 s, cavities were made with a depth of approximately 764 μm in each tooth. SEM showed the cavity surface in the water jet group had a more irregular concave and convex structure than that in the high-speed dental drill group. There was a trend that the microleakage and bonding width was smaller in the water jet group than in the high-speed dental drill group. FEA indicated that the stress on the resin surface was greater than on the enamel surface in the water jet group. Compared with the tooth drilled by a high-speed dental drill, the tooth drilled by a water jet gained better retention of the filling material and suffered less bonding strength on the enamel surface. Water jet drilling is effective for enamel drilling.

Funder

independent & interdisciplinary research projects of Wuhan university

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. The dentin substrate: structure and properties related to bonding;GW Marshall;J Dent,1997

2. Variable smear layer and adhesive application: the pursuit of clinical relevance in bond strength testing.;A Chowdhury;Iny J Mol Sci,2019

3. Cervicofacial subcutaneous emphysema associated with dental laser treatment.;S Mitsunaga;Aust Dent J,2013

4. Evaluation of thermal cooling mechanisms for laser application to teeth.;LJ Miserendino;Laser Surg Med,1993

5. Reducing the risk of sensitivity and pulpal complications after the placement of crowns and fixed partial dentures.;M Brannstrom;Quintessence Int.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3