Abstract
Background
The entity assignment of salivary gland tumors (SGT) based on histomorphology can be challenging. Raman spectroscopy has been applied to analyze differences in the molecular composition of tissues. The aim of this study was to evaluate the suitability of RS for entity assignment in SGT.
Methods
Raman data were collected in deparaffinized sections of pleomorphic adenomas (PA) and adenoid cystic carcinomas (ACC). Multivariate data and chemometric analysis were completed using the Unscrambler software.
Results
The Raman spectra detected in ACC samples were mostly assigned to nucleic acids, lipids, and amides. In a principal component-based linear discriminant analysis (LDA) 18 of 20 tumor samples were classified correctly.
Conclusion
In this proof of concept study, we show that a reliable SGT diagnosis based on LDA algorithm appears possible, despite variations in the entity-specific mean spectra. However, a standardized workflow for tissue sample preparation, measurement setup, and chemometric algorithms is essential to get reliable results.
Funder
Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献