A low direct electrical signal attenuates oxidative stress and inflammation in septic rats

Author:

Ustunova Savas,Haciosmanoglu Ebru,Bulut Huri,Elibol BirsenORCID,Kilic Aysu,Hekimoglu Rumeysa,Tunc Serkan,Atmaca Rabia,Kaygusuz Irem,Tunc Sevil,Tunc Gulcin Beyza,Meral Ismail

Abstract

Electrical stimulation is proposed to exert an antimicrobial effect according to studies performed using bacterial and cell cultures. Therefore, we investigated the effects of electrification on inflammation in septic rats. Twenty-eight male Wistar albino rats were divided into 4 groups: healthy control (C), electrified healthy (E), sepsis (S), and electrified sepsis (SE) groups. Staphylococcus aureus (1 x 109 colonies) in 1 ml of medium was intraperitoneally injected into rats to produce a sepsis model. The rats in the E and SE groups were exposed to a low direct electrical signal (300 Hz and 2.5 volts) for 40 min and 1 and 6 h after bacterial infection. Immediately after the second electrical signal application, blood and tissue samples of the heart, lung, and liver were collected. An antibacterial effect of a low direct electrical signal was observed in the blood of rats. The effects of electrical signals on ameliorating changes in the histological structure of tissues, blood pH, gases, viscosity and cell count, activities of some important enzymes, oxidative stress parameters, inflammation and tissue apoptosis were observed in the SE group compared to the S group. Low direct electrical signal application exerts antibacterial, antioxidant, anti-inflammatory and antiapoptotic effects on septic rats due to the induction of electrolysis in body fluids without producing any tissue damage.

Funder

avb biotech

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3