Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers

Author:

Fraiwan LuayORCID,Hassanin Omnia

Abstract

This study proposes a reliable computer-aided framework to identify gait fluctuations associated with a wide range of degenerative neuromuscular disease (DNDs) and health conditions. Investigated DNDs included amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s disease (HD). We further performed a statistical and classification comparison elucidating the discriminative capability of different gait signals, including vertical ground reaction force (VGRF), stride duration, stance duration, and swing duration. Feature representation of these gait signals was based on statistical amplitude quantification using the root mean square (RMS), variance, kurtosis, and skewness metrics. We investigated various decision tree (DT) based ensemble methods such as bagging, adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and random subspace to tackle the challenge of multi-class classification. Experimental results showed that AdaBoost ensembling provided a 6.49%, 0.78%, 2.31%, and 2.72% prediction rate improvement for the VGRF, stride, stance, and swing signals, respectively. The proposed approach achieved the highest classification accuracy of 99.17%, sensitivity of 98.23%, and specificity of 99.43%, using the VGRF-based features and the adaptive boosting classification model. This work demonstrates the effective capability of using simple gait fluctuation analysis and machine learning approaches to detect DNDs. Computer-aided analysis of gait fluctuations provides a promising advent to enhance clinical diagnosis of DNDs.

Funder

Abu Dhabi University Research office

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3