Synchronous climate hazards pose an increasing challenge to global coffee production

Author:

Richardson DougORCID,Kath Jarrod,Byrareddy Vivekananda M.,Monselesan Didier P.ORCID,Risbey James S.ORCID,Squire Dougal T.ORCID,Tozer Carly R.ORCID

Abstract

Global coffee production is at risk from synchronous crop failures, characterised by widespread concurrent reductions in yield occurring in multiple countries at the same time. For other crops, previous studies have shown that synchronous failures can be forced by spatially compounding climate anomalies, which in turn may be driven by large-scale climate modes such as the El Niño Southern Oscillation (ENSO). We provide a systematic analysis of spatially compounding climate hazards relevant to global coffee production. We identify 12 climate hazards from the literature, and assess the extent to which these hazards occur and co-occur for the top 12 coffee producing regions globally. We find that the number of climate hazards and compound events has increased in every region between 1980 and 2020. Furthermore, a clear climate change signature is evident, as the type of hazard has shifted from overly cool conditions to overly warm. Spatially compounding hazards have become particularly common in the past decade, with only one of the six most hazardous years occurring before 2010. Our results suggest that ENSO is the primary mode in explaining annual compound event variability, both globally and regionally. El Niño-like sea-surface temperatures in the Pacific Ocean are associated with decreased precipitation and increased temperatures in most coffee regions, and with spatially compounding warm and dry events. This relationship is reversed for La Niña-like signatures. The Madden Julian Oscillation also shows a strong association with climate hazards to coffee, with increased activity in the Maritime Continent related to a global increase in the number of cold or wet hazards and a decrease in the number of warm or dry hazards. With climate change projections showing a continued rise in temperatures in the tropics is likely, we suggest that coffee production can expect ongoing systemic shocks in response to spatially compounding climate hazards.

Funder

Australian Climate Service

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety—International Climate Initiative

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated?;FM DaMatta;Climatic Change,2019

2. International Coffee Organization. The Value of Coffee: Sustainability, Inclusiveness and Resilience of the Coffee Global Value Chain. International Coffee Organization; 2020. Available from: https://www.internationalcoffeecouncil.com/cdr2020.

3. A bitter cup: climate change profile of global production of Arabica and Robusta coffee;C Bunn;Climatic Change,2015

4. Resilience potential of the Ethiopian coffee sector under climate change;J Moat;Nature Plants,2017

5. The impact of climate change and variability on coffee production: a systematic review;Y Pham;Climatic Change,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3