An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis

Author:

Huang Ruirui,Irish Vivian F.ORCID

Abstract

A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete view of how epigenetic factors can regulate developmental events such as organogenesis, and the transition from cell division to cell expansion, in plants. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this study, we investigated how the RABBIT EARS (RBE) transcriptional repressor maintains the downregulation of its downstream direct target, TCP5, long after RBE expression dissipates. We showed that RBE recruits the Groucho/Tup1-like corepressor TOPLESS (TPL) to repress TCP5 transcription in petal primordia. This process involves multiple layers of changes such as remodeling of chromatin accessibility, alteration of RNA polymerase activity, and histone modifications, resulting in an epigenetic memory that is maintained through multiple cell divisions. This memory functions to maintain cell divisions during the early phase of petal development, and its attenuation in a cell division-dependent fashion later in development enables the transition from cell division to cell expansion. Overall, this study unveils a novel mechanism by which the memory of an epigenetic state, and its cell-cycle regulated decay, acts as a timer to precisely control organogenesis.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. Control of Organ Size in Plants;AE Powell;Review. Elsevier Ltd,2012

2. The Arabidopsis petal: a model for plant organogenesis;VF Irish;Trends in Plant Science,2008

3. Temporal Control of Plant Organ Growth by TCP Transcription Factors;T Huang;Current Biology. Elsevier Ltd,2015

4. Histone Variants in the Specialization of Plant Chromatin;M Foroozani;Annu Rev Plant Biol. Annual Reviews,2022

5. Is there a code embedded in proteins that is based on post-translational modifications?;RJ Sims;Nat Rev Mol Cell Biol. Nature Publishing Group,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3