OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans

Author:

Aoki IchiroORCID,Jurado Paola,Nawa Kanji,Kondo Rumi,Yamashiro RikuORCID,Matsuyama Hironori J.,Ferrer Isidre,Nakano ShunjiORCID,Mori IkueORCID

Abstract

Animals detect changes in both their environment and their internal state and modify their behavior accordingly. Yet, it remains largely to be clarified how information of environment and internal state is integrated and how such integrated information modifies behavior. Well-fed C. elegans migrates to past cultivation temperature on a thermal gradient, which is disrupted when animals are starved. We recently reported that the neuronal activities synchronize between a thermosensory neuron AFD and an interneuron AIY, which is directly downstream of AFD, in well-fed animals, while this synchrony is disrupted in starved animals. However, it remained to be determined whether the disruption of the synchrony is derived from modulation of the transmitter release from AFD or from the modification of reception or signal transduction in AIY. By performing forward genetics on a transition of thermotaxis behavior along starvation, we revealed that OLA-1, an Obg-like ATPase, functions in AFD to promote disruption of AFD-AIY synchrony and behavioral transition. Our results suggest that the information of hunger is delivered to the AFD thermosensory neuron and gates transmitter release from AFD to disrupt thermotaxis, thereby shedding light onto a mechanism for the integration of environmental and internal state to modulate behavior.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Spanish Ministry of Education

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3