INSIDER: Interpretable sparse matrix decomposition for RNA expression data analysis

Author:

Zhao KaiORCID,Huang Sen,Lin Cuichan,Sham Pak ChungORCID,So Hon-Cheong,Lin ZhixiangORCID

Abstract

RNA sequencing (RNA-Seq) is widely used to capture transcriptome dynamics across tissues, biological entities, and conditions. Currently, few or no methods can handle multiple biological variables (e.g., tissues/ phenotypes) and their interactions simultaneously, while also achieving dimension reduction (DR). We propose INSIDER, a general and flexible statistical framework based on matrix factorization, which is freely available at https://github.com/kai0511/insider. INSIDER decomposes variation from different biological variables and their interactions into a shared low-rank latent space. Particularly, it introduces the elastic net penalty to induce sparsity while considering the grouping effects of genes. It can achieve DR of high-dimensional data (of > = 3 dimensions), as opposed to conventional methods (e.g., PCA/NMF) which generally only handle 2D data (e.g., sample × expression). Besides, it enables computing ’adjusted’ expression profiles for specific biological variables while controlling variation from other variables. INSIDER is computationally efficient and accommodates missing data. INSIDER also performed similarly or outperformed a close competing method, SDA, as shown in simulations and can handle complex missing data in RNA-Seq data. Moreover, unlike SDA, it can be used when the data cannot be structured into a tensor. Lastly, we demonstrate its usefulness via real data analysis, including clustering donors for disease subtyping, revealing neuro-development trajectory using the BrainSpan data, and uncovering biological processes contributing to variables of interest (e.g., disease status and tissue) and their interactions.

Funder

Chinese University of Hong Kong

Faculty of Science, Chinese University of Hong Kong

Research Grants Council, University Grants Committee

Publisher

Public Library of Science (PLoS)

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3