Partial sequence identity in a 25-nucleotide long element is sufficient for transcriptional adaptation in the Caenorhabditis elegans act-5/act-3 model

Author:

Welker Jordan M.ORCID,Serobyan VahanORCID,Zaker Esfahani ElhamalsadatORCID,Stainier Didier Y. R.ORCID

Abstract

Genetic robustness can be achieved via several mechanisms including transcriptional adaptation (TA), a sequence similarity-driven process whereby mutant mRNA degradation products modulate, directly or indirectly, the expression of so-called adapting genes. To identify the sequences required for this process, we utilized a transgenic approach in Caenorhabditis elegans, combining an overexpression construct for a mutant gene (act-5) and a fluorescent reporter for the corresponding adapting gene (act-3). Analyzing a series of modifications for each construct, we identified, in the 5’ regulatory region of the act-3 locus, a 25-base pair (bp) element which exhibits 60% identity with a sequence in the act-5 mRNA and which, in the context of a minimal promoter, is sufficient to induce ectopic expression of the fluorescent reporter. The 25 nucleotide (nt) element in the act-5 mRNA lies between the premature termination codon (PTC) and the next exon/exon junction, suggesting the importance of this region of the mutant mRNA for TA. Additionally, we found that single-stranded RNA injections of this 25 nt element from act-5 into the intestine of wild-type larvae led to higher levels of adapting gene (act-3) mRNA. Different models have been proposed to underlie the modulation of gene expression during TA including chromatin remodeling, the inhibition of antisense RNAs, the release of transcriptional pausing, and the suppression of premature transcription termination, and our data clearly show the importance of the regulatory region of the adapting gene in this particular act-5/act-3 TA model. Our findings also suggest that RNA fragments can modulate the expression of loci exhibiting limited sequence similarity, possibly a critical observation when designing RNA based therapies.

Funder

H2020 European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3