A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors

Author:

Vanmarcke GertORCID,Deparis QuintenORCID,Vanthienen WardORCID,Peetermans ArneORCID,Foulquié-Moreno Maria R.ORCID,Thevelein Johan M.ORCID

Abstract

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.

Funder

agentschap voor innovatie door wetenschap en technologie

agentschap innoveren en ondernemen

fp7 people: marie-curie actions

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3