A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis

Author:

Luhur JohanaORCID,Chan HelenaORCID,Kachappilly Benson,Mohamed AhmedORCID,Morlot CécileORCID,Awad Milena,Lyras DenaORCID,Taib NajwaORCID,Gribaldo SimonettaORCID,Rudner David Z.ORCID,Rodrigues Christopher D. A.ORCID

Abstract

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.

Funder

Australian Research Council

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics(clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference72 articles.

1. The Molecular Basis of Noncanonical Bacterial Morphology;PD Caccamo;Trends Microbiol,2018

2. The selective value of bacterial shape;KD Young;Microbiol Mol Biol Rev,2006

3. Cell shape and cell-wall organization in Gram-negative bacteria;KC Huang;Proceedings of the National Academy of Sciences,2008

4. Regulation of bacterial cell wall growth;AJ Egan;FEBS J,2017

5. Regulation of peptidoglycan synthesis and remodelling;AJF Egan;Nat Rev Microbiol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3