Optimal control methods for nonlinear parameter estimation in biophysical neuron models

Author:

Kadakia NiragORCID

Abstract

Functional forms of biophysically-realistic neuron models are constrained by neurobiological and anatomical considerations, such as cell morphologies and the presence of known ion channels. Despite these constraints, neuron models still contain unknown static parameters which must be inferred from experiment. This inference task is most readily cast into the framework of state-space models, which systematically takes into account partial observability and measurement noise. Inferring only dynamical state variables such as membrane voltages is a well-studied problem, and has been approached with a wide range of techniques beginning with the well-known Kalman filter. Inferring both states and fixed parameters, on the other hand, is less straightforward. Here, we develop a method for joint parameter and state inference that combines traditional state space modeling with chaotic synchronization and optimal control. Our methods are tailored particularly to situations with considerable measurement noise, sparse observability, very nonlinear or chaotic dynamics, and highly uninformed priors. We illustrate our approach both in a canonical chaotic model and in a phenomenological neuron model, showing that many unknown parameters can be uncovered reliably and accurately from short and noisy observed time traces. Our method holds promise for estimation in larger-scale systems, given ongoing improvements in calcium reporters and genetically-encoded voltage indicators.

Funder

National Institute of Mental Health

Swartz Foundation

National Institute on Deafness and Other Communication Disorders

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive unscented Kalman filter for neuronal state and parameter estimation;Journal of Computational Neuroscience;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3