Bioschemas training profiles: A set of specifications for standardizing training information to facilitate the discovery of training programs and resources

Author:

Castro Leyla JaelORCID,Palagi Patricia M.ORCID,Beard NiallORCID,Attwood Teresa K.ORCID,Brazas Michelle D.ORCID

Abstract

Stand-alone life science training events and e-learning solutions are among the most sought-after modes of training because they address both point-of-need learning and the limited timeframes available for “upskilling.” Yet, finding relevant life sciences training courses and materials is challenging because such resources are not marked up for internet searches in a consistent way. This absence of markup standards to facilitate discovery, re-use, and aggregation of training resources limits their usefulness and knowledge translation potential. Through a joint effort between the Global Organisation for Bioinformatics Learning, Education and Training (GOBLET), the Bioschemas Training community, and the ELIXIR FAIR Training Focus Group, a set of Bioschemas Training profiles has been developed, published, and implemented for life sciences training courses and materials. Here, we describe our development approach and methods, which were based on the Bioschemas model, and present the results for the 3 Bioschemas Training profiles: TrainingMaterial, Course, and CourseInstance. Several implementation challenges were encountered, which we discuss alongside potential solutions. Over time, continued implementation of these Bioschemas Training profiles by training providers will obviate the barriers to skill development, facilitating both the discovery of relevant training events to meet individuals’ learning needs, and the discovery and re-use of training and instructional materials.

Funder

ELIXIR-EXCELERATE

GOBLET

H3Africa

CIHR Institute of Infection and Immunity

Ontario Institute for Cancer Research

2018 ELIXIR BioHackathon Europe

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference25 articles.

1. The FAIR Guiding Principles for scientific data management and stewardship;MD Wilkinson;Sci Data,2016

2. Towards FAIR principles for research software—IOS Press;A-L Lamprecht;Data Sci,2020

3. FAIR Principles for Research Software (FAIR4RS Principles);C Hong;Zenodo,2022

4. FAIR Computational Workflows;C Goble;Data Intell,2020

5. Research data management;A Surkis;J Med Libr Assoc,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schema.org as a Lightweight Harmonization Approach for NFDI;Proceedings of the Conference on Research Data Infrastructure;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3