Structural identifiability of biomolecular controller motifs with and without flow measurements as model output

Author:

Haus Eivind S.ORCID,Drengstig Tormod,Thorsen KristianORCID

Abstract

Controller motifs are simple biomolecular reaction networks with negative feedback. They can explain how regulatory function is achieved and are often used as building blocks in mathematical models of biological systems. In this paper we perform an extensive investigation into structural identifiability of controller motifs, specifically the so–called basic and antithetic controller motifs. Structural identifiability analysis is a useful tool in the creation and evaluation of mathematical models: it can be used to ensure that model parameters can be determined uniquely and to examine which measurements are necessary for this purpose. This is especially useful for biological models where parameter estimation can be difficult due to limited availability of measureable outputs. Our aim with this work is to investigate how structural identifiability is affected by controller motif complexity and choice of measurements. To increase the number of potential outputs we propose two methods for including flow measurements and show how this affects structural identifiability in combination with, or in the absence of, concentration measurements. In our investigation, we analyze 128 different controller motif structures using a combination of flow and/or concentration measurements, giving a total of 3648 instances. Among all instances, 34% of the measurement combinations provided structural identifiability. Our main findings for the controller motifs include: i) a single measurement is insufficient for structural identifiability, ii) measurements related to different chemical species are necessary for structural identifiability. Applying these findings result in a reduced subset of 1568 instances, where 80% are structurally identifiable, and more complex/interconnected motifs appear easier to structurally identify. The model structures we have investigated are commonly used in models of biological systems, and our results demonstrate how different model structures and measurement combinations affect structural identifiability of controller motifs.

Funder

University of Stavanger, Norway

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference98 articles.

1. Mathematical modeling of biological systems;S Motta;Briefings in Bioinformatics,2013

2. Computational Modeling, Formal Analysis, and Tools for Systems Biology;E Bartocci;PLoS Computational Biology,2016

3. Lessons Learned from Quantitative Dynamical Modeling in Systems Biology;A Raue;PLoS ONE,2013

4. On structural and practical identifiability;FG Wieland;Current Opinion in Systems Biology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3