LAP: Liability Antibody Profiler by sequence & structural mapping of natural and therapeutic antibodies

Author:

Satława Tadeusz,Tarkowski Mateusz,Wróbel Sonia,Dudzic Paweł,Gawłowski Tomasz,Klaus Tomasz,Orłowski MarekORCID,Kostyn Anna,Kumar Sandeep,Buchanan Andrew,Krawczyk KonradORCID

Abstract

Antibody-based therapeutics must not undergo chemical modifications that would impair their efficacy or hinder their developability. A commonly used technique to de-risk lead biotherapeutic candidates annotates chemical liability motifs on their sequence. By analyzing sequences from all major sources of data (therapeutics, patents, GenBank, literature, and next-generation sequencing outputs), we find that almost all antibodies contain an average of 3–4 such liability motifs in their paratopes, irrespective of the source dataset. This is in line with the common wisdom that liability motif annotation is over-predictive. Therefore, we have compiled three computational flags to prioritize liability motifs for removal from lead drug candidates: 1. germline, to reflect naturally occurring motifs, 2. therapeutic, reflecting chemical liability motifs found in therapeutic antibodies, and 3. surface, indicative of structural accessibility for chemical modification. We show that these flags annotate approximately 60% of liability motifs as benign, that is, the flagged liabilities have a smaller probability of undergoing degradation as benchmarked on two experimental datasets covering deamidation, isomerization, and oxidation. We combined the liability detection and flags into a tool called Liability Antibody Profiler (LAP), publicly available at lap.naturalantibody.com. We anticipate that LAP will save time and effort in de-risking therapeutic molecules.

Publisher

Public Library of Science (PLoS)

Reference49 articles.

1. The global landscape of approved antibody therapies.;X Lyu;Antib Ther,2022

2. Biophysical properties of the clinical-stage antibody landscape;T Jain;Proc Natl Acad Sci U S A,2017

3. Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches.;T Jain;MAbs,2023

4. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics;W Zhang;Antib Ther,2023

5. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression.;A Buchanan;MAbs,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3