EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number

Author:

Gressani OswaldoORCID,Wallinga JaccoORCID,Althaus Christian L.ORCID,Hens NielORCID,Faes ChristelORCID

Abstract

In infectious disease epidemiology, the instantaneous reproduction number R t is a time-varying parameter defined as the average number of secondary infections generated by an infected individual at time t. It is therefore a crucial epidemiological statistic that assists public health decision makers in the management of an epidemic. We present a new Bayesian tool (EpiLPS) for robust estimation of the time-varying reproduction number. The proposed methodology smooths the epidemic curve and allows to obtain (approximate) point estimates and credible intervals of R t by employing the renewal equation, using Bayesian P-splines coupled with Laplace approximations of the conditional posterior of the spline vector. Two alternative approaches for inference are presented: (1) an approach based on a maximum a posteriori argument for the model hyperparameters, delivering estimates of R t in only a few seconds; and (2) an approach based on a Markov chain Monte Carlo (MCMC) scheme with underlying Langevin dynamics for efficient sampling of the posterior target distribution. Case counts per unit of time are assumed to follow a negative binomial distribution to account for potential overdispersion in the data that would not be captured by a classic Poisson model. Furthermore, after smoothing the epidemic curve, a “plug-in’’ estimate of the reproduction number can be obtained from the renewal equation yielding a closed form expression of R t as a function of the spline parameters. The approach is extremely fast and free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003), influenza A H1N1 (2009) in the USA and on the SARS-CoV-2 pandemic (2020-2021) for Belgium, Portugal, Denmark and France.

Funder

H2020 EpiPose

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Statistical estimation of the reproductive number from case notification data;LF White;American Journal of Epidemiology,2021

2. Practical considerations for measuring the effective reproductive number, Rt;KM Gostic;PloS Computational Biology,2020

3. A new framework and software to estimate time-varying reproduction numbers during epidemics;A Cori;American Journal of Epidemiology,2013

4. Cori A. EpiEstim: estimate time varying reproduction numbers from epidemic curves (CRAN); 2021. Available from: https://cran.r-project.org/web/packages/EpiEstim/index.html.

5. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves;KV Parag;PloS Computational Biology,2021

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3