Adaptive multi-objective control explains how humans make lateral maneuvers while walking

Author:

Desmet David M.,Cusumano Joseph P.ORCID,Dingwell Jonathan B.ORCID

Abstract

To successfully traverse their environment, humans often perform maneuvers to achieve desired task goals while simultaneously maintaining balance. Humans accomplish these tasks primarily by modulating their foot placements. As humans are more unstable laterally, we must better understand how humans modulate lateral foot placement. We previously developed a theoretical framework and corresponding computational models to describe how humans regulate lateral stepping during straight-ahead continuous walking. We identified goal functions for step width and lateral body position that define the walking task and determine the set of all possible task solutions as Goal Equivalent Manifolds (GEMs). Here, we used this framework to determine if humans can regulate lateral stepping during non-steady-state lateral maneuvers by minimizing errors consistent with these goal functions. Twenty young healthy adults each performed four lateral lane-change maneuvers in a virtual reality environment. Extending our general lateral stepping regulation framework, we first re-examined the requirements of such transient walking tasks. Doing so yielded new theoretical predictions regarding how steps during any such maneuver should be regulated to minimize error costs, consistent with the goals required at each step and with how these costs are adapted at each step during the maneuver. Humans performed the experimental lateral maneuvers in a manner consistent with our theoretical predictions. Furthermore, their stepping behavior was well modeled by allowing the parameters of our previous lateral stepping models to adapt from step to step. To our knowledge, our results are the first to demonstrate humans might use evolving cost landscapes in real time to perform such an adaptive motor task and, furthermore, that such adaptation can occur quickly–over only one step. Thus, the predictive capabilities of our general stepping regulation framework extend to a much greater range of walking tasks beyond just normal, straight-ahead walking.

Funder

National Institute on Aging

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference88 articles.

1. Humans Use Multi-Objective Control to Regulate Lateral Foot Placement When Walking;JB Dingwell;PLoS Comput Biol,2019

2. Foot placement relies on state estimation during visually guided walking;RS Maeda;J Neurophysiol,2017

3. Experimental study of the behavioural mechanisms underlying self-organization in human crowds;M Moussaïd;Proc Roy Soc B Biol Sci,2009

4. The critical phase for visual control of human walking over complex terrain;JS Matthis;Proc Natl Acad Sci USA,2017

5. Gaze and the Control of Foot Placement When Walking in Natural Terrain;JS Matthis;Curr Biol,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3