Abstract
To successfully traverse their environment, humans often perform maneuvers to achieve desired task goals while simultaneously maintaining balance. Humans accomplish these tasks primarily by modulating their foot placements. As humans are more unstable laterally, we must better understand how humans modulate lateral foot placement. We previously developed a theoretical framework and corresponding computational models to describe how humans regulate lateral stepping during straight-ahead continuous walking. We identified goal functions for step width and lateral body position that define the walking task and determine the set of all possible task solutions as Goal Equivalent Manifolds (GEMs). Here, we used this framework to determine if humans can regulate lateral stepping during non-steady-state lateral maneuvers by minimizing errors consistent with these goal functions. Twenty young healthy adults each performed four lateral lane-change maneuvers in a virtual reality environment. Extending our general lateral stepping regulation framework, we first re-examined the requirements of such transient walking tasks. Doing so yielded new theoretical predictions regarding how steps during any such maneuver should be regulated to minimize error costs, consistent with the goals required at each step and with how these costs are adapted at each step during the maneuver. Humans performed the experimental lateral maneuvers in a manner consistent with our theoretical predictions. Furthermore, their stepping behavior was well modeled by allowing the parameters of our previous lateral stepping models to adapt from step to step. To our knowledge, our results are the first to demonstrate humans might use evolving cost landscapes in real time to perform such an adaptive motor task and, furthermore, that such adaptation can occur quickly–over only one step. Thus, the predictive capabilities of our general stepping regulation framework extend to a much greater range of walking tasks beyond just normal, straight-ahead walking.
Funder
National Institute on Aging
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献