Abstract
Neural circuits consist of many noisy, slow components, with individual neurons subject to ion channel noise, axonal propagation delays, and unreliable and slow synaptic transmission. This raises a fundamental question: how can reliable computation emerge from such unreliable components? A classic strategy is to simply average over a population of N weakly-coupled neurons to achieve errors that scale as 1 / N. But more interestingly, recent work has introduced networks of leaky integrate-and-fire (LIF) neurons that achieve coding errors that scale superclassically as 1/N by combining the principles of predictive coding and fast and tight inhibitory-excitatory balance. However, spike transmission delays preclude such fast inhibition, and computational studies have observed that such delays can cause pathological synchronization that in turn destroys superclassical coding performance. Intriguingly, it has also been observed in simulations that noise can actually improve coding performance, and that there exists some optimal level of noise that minimizes coding error. However, we lack a quantitative theory that describes this fascinating interplay between delays, noise and neural coding performance in spiking networks. In this work, we elucidate the mechanisms underpinning this beneficial role of noise by deriving analytical expressions for coding error as a function of spike propagation delay and noise levels in predictive coding tight-balance networks of LIF neurons. Furthermore, we compute the minimal coding error and the associated optimal noise level, finding that they grow as power-laws with the delay. Our analysis reveals quantitatively how optimal levels of noise can rescue neural coding performance in spiking neural networks with delays by preventing the build up of pathological synchrony without overwhelming the overall spiking dynamics. This analysis can serve as a foundation for the further study of precise computation in the presence of noise and delays in efficient spiking neural circuits.
Funder
Nippon Telegraph and Telephone
Simons Foundation
James S. McDonnell Foundation
National Science Foundation
Swartz Foundation
Office of Naval Research
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference31 articles.
1. Noise in the nervous system;AA Faisal;Nature reviews neuroscience,2008
2. The neurobiology of slow synaptic transmission;P Greengard;Science,2001
3. Probabilistic logics and the synthesis of reliable organisms from unreliable components;J Von Neumann;Automata studies,1956
4. Energy limitation as a selective pressure on the evolution of sensory systems;JE Niven;Journal of Experimental Biology,2008
5. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution;LC Aiello;Current anthropology,1995
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献