Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer’s disease

Author:

Gupta ChiragORCID,Xu Jielin,Jin TingORCID,Khullar Saniya,Liu Xiaoyu,Alatkar SayaliORCID,Cheng Feixiong,Wang DaifengORCID

Abstract

Dysregulation of gene expression in Alzheimer’s disease (AD) remains elusive, especially at the cell type level. Gene regulatory network, a key molecular mechanism linking transcription factors (TFs) and regulatory elements to govern gene expression, can change across cell types in the human brain and thus serve as a model for studying gene dysregulation in AD. However, AD-induced regulatory changes across brain cell types remains uncharted. To address this, we integrated single-cell multi-omics datasets to predict the gene regulatory networks of four major cell types, excitatory and inhibitory neurons, microglia and oligodendrocytes, in control and AD brains. Importantly, we analyzed and compared the structural and topological features of networks across cell types and examined changes in AD. Our analysis shows that hub TFs are largely common across cell types and AD-related changes are relatively more prominent in some cell types (e.g., microglia). The regulatory logics of enriched network motifs (e.g., feed-forward loops) further uncover cell type-specific TF-TF cooperativities in gene regulation. The cell type networks are also highly modular and several network modules with cell-type-specific expression changes in AD pathology are enriched with AD-risk genes. The further disease-module-drug association analysis suggests cell-type candidate drugs and their potential target genes. Finally, our network-based machine learning analysis systematically prioritized cell type risk genes likely involved in AD. Our strategy is validated using an independent dataset which showed that top ranked genes can predict clinical phenotypes (e.g., cognitive impairment) of AD with reasonable accuracy. Overall, this single-cell network biology analysis provides a comprehensive map linking genes, regulatory networks, cell types and drug targets and reveals cell-type gene dysregulation in AD.

Funder

National Institutes of Health

National Science Foundation

University of Wisconsin–Madison

National Institute of Child Health and Human Development

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3