Inverse folding based pre-training for the reliable identification of intrinsic transcription terminators

Author:

Brandenburg Vivian B.ORCID,Narberhaus FranzORCID,Mosig AxelORCID

Abstract

It is well-established that neural networks can predict or identify structural motifs of non-coding RNAs (ncRNAs). Yet, the neural network based identification of RNA structural motifs is limited by the availability of training data that are often insufficient for learning features of specific ncRNA families or structural motifs. Aiming to reliably identify intrinsic transcription terminators in bacteria, we introduce a novel pre-training approach that uses inverse folding to generate training data for predicting or identifying a specific family or structural motif of ncRNA. We assess the ability of neural networks to identify secondary structure by systematic in silico mutagenesis experiments. In a study to identify intrinsic transcription terminators as functionally well-understood RNA structural motifs, our inverse folding based pre-training approach significantly boosts the performance of neural network topologies, which outperform previous approaches to identify intrinsic transcription terminators. Inverse-folding based pre-training provides a simple, yet highly effective way to integrate the well-established thermodynamic energy model into deep neural networks for identifying ncRNA families or motifs. The pre-training technique is broadly applicable to a range of network topologies as well as different types of ncRNA families and motifs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. The noncoding RNA revolution—trashing old rules to forge new ones;TR Cech;Cell,2014

2. Prediction of RNA secondary structure by free energy minimization;DH Mathews;Current Opinion in Structural Biology,2006

3. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information;M Zuker;Nucleic Acids Research,1981

4. Profile hidden Markov models;SR Eddy;Bioinformatics (Oxford, England),1998

5. Infernal 1.0: inference of RNA alignments;EP Nawrocki;Bioinformatics,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3