Modulation of working memory duration by synaptic and astrocytic mechanisms

Author:

Becker SophiaORCID,Nold AndreasORCID,Tchumatchenko TatjanaORCID

Abstract

Short-term synaptic plasticity and modulations of the presynaptic vesicle release rate are key components of many working memory models. At the same time, an increasing number of studies suggests a potential role of astrocytes in modulating higher cognitive function such as WM through their influence on synaptic transmission. Which influence astrocytic signaling could have on the stability and duration of WM representations, however, is still unclear. Here, we introduce a slow, activity-dependent astrocytic regulation of the presynaptic release probability in a synaptic attractor model of WM. We compare and analyze simulations of a simple WM protocol in firing rate and spiking networks with and without astrocytic regulation, and underpin our observations with analyses of the phase space dynamics in the rate network. We find that the duration and stability of working memory representations are altered by astrocytic signaling and by noise. We show that astrocytic signaling modulates the mean duration of WM representations. Moreover, if the astrocytic regulation is strong, a slow presynaptic timescale introduces a ‘window of vulnerability’, during which WM representations are easily disruptable by noise before being stabilized. We identify two mechanisms through which noise from different sources in the network can either stabilize or destabilize WM representations. Our findings suggest that (i) astrocytic regulation can act as a crucial determinant for the duration of WM representations in synaptic attractor models of WM, and (ii) that astrocytic signaling could facilitate different mechanisms for volitional top-down control of WM representations and their duration.

Funder

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

Joachim Herz Stiftung

Studienstiftung des Deutschen Volkes

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can RNA Affect Memory Modulation? Implications for PTSD Understanding and Treatment;International Journal of Molecular Sciences;2023-08-17

2. Building transformers from neurons and astrocytes;Proceedings of the National Academy of Sciences;2023-08-14

3. Targeting operational regimes of interest in recurrent neural networks;PLOS Computational Biology;2023-05-15

4. Shining the Light on Astrocytic Ensembles;Cells;2023-04-26

5. Situation-Based Neuromorphic Memory in Spiking Neuron-Astrocyte Network;IEEE Transactions on Neural Networks and Learning Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3