Abstract
Proximity sequencing (Prox-seq) simultaneously measures gene expression, protein expression and protein complexes on single cells. Using information from dual-antibody binding events, Prox-seq infers surface protein dimers at the single-cell level. Prox-seq provides multi-dimensional phenotyping of single cells in high throughput, and was recently used to track the formation of receptor complexes during cell signaling and discovered a novel interaction between CD9 and CD8 in naïve T cells. The distribution of protein abundance can affect identification of protein complexes in a complicated manner in dual-binding assays like Prox-seq. These effects are difficult to explore with experiments, yet important for accurate quantification of protein complexes. Here, we introduce a physical model of Prox-seq and computationally evaluate several different methods for reducing background noise when quantifying protein complexes. Furthermore, we developed an improved method for analysis of Prox-seq data, which resulted in more accurate and robust quantification of protein complexes. Finally, our Prox-seq model offers a simple way to investigate the behavior of Prox-seq data under various biological conditions and guide users toward selecting the best analysis method for their data.
Funder
National Institute of General Medical Sciences
Allen Institute
National Human Genome Research Institute
National Science Foundation
Division of Mathematical Sciences
Office of Intramural Training and Education
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献