Humans account for cognitive costs when finding shortcuts: An information-theoretic analysis of navigation

Author:

Lancia Gian LucaORCID,Eluchans Mattia,D’Alessandro MarcoORCID,Spiers Hugo J.,Pezzulo GiovanniORCID

Abstract

When faced with navigating back somewhere we have been before we might either retrace our steps or seek a shorter path. Both choices have costs. Here, we ask whether it is possible to characterize formally the choice of navigational plans as a bounded rational process that trades off the quality of the plan (e.g., its length) and the cognitive cost required to find and implement it. We analyze the navigation strategies of two groups of people that are firstly trained to follow a "default policy" taking a route in a virtual maze and then asked to navigate to various known goal destinations, either in the way they want ("Go To Goal") or by taking novel shortcuts ("Take Shortcut"). We address these wayfinding problems using InfoRL: an information-theoretic approach that formalizes the cognitive cost of devising a navigational plan, as the informational cost to deviate from a well-learned route (the "default policy"). In InfoRL, optimality refers to finding the best trade-off between route length and the amount of control information required to find it. We report five main findings. First, the navigational strategies automatically identified by InfoRL correspond closely to different routes (optimal or suboptimal) in the virtual reality map, which were annotated by hand in previous research. Second, people deliberate more in places where the value of investing cognitive resources (i.e., relevant goal information) is greater. Third, compared to the group of people who receive the "Go To Goal" instruction, those who receive the "Take Shortcut" instruction find shorter but less optimal solutions, reflecting the intrinsic difficulty of finding optimal shortcuts. Fourth, those who receive the "Go To Goal" instruction modulate flexibly their cognitive resources, depending on the benefits of finding the shortcut. Finally, we found a surprising amount of variability in the choice of navigational strategies and resource investment across participants. Taken together, these results illustrate the benefits of using InfoRL to address navigational planning problems from a bounded rational perspective.

Funder

Horizon 2020 Framework Programme

European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

1. Vector-based pedestrian navigation in cities;C Bongiorno;Nat Comput Sci.Oct,2021

2. London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London.;EM Griesbauer;Hippocampus,2022

3. Large-scale assessment of human navigation ability across the lifespan.;IJM van der Ham;Sci Rep.,2020

4. Exploration patterns shape cognitive map learning [Internet];I Brunec;OSF Preprints,2022

5. Global Determinants of Navigation Ability;A Coutrot;Curr Biol CB,2018

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3